skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Freihat, Abed Alhakim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abbas, Mourad; Freihat, Abed Alhakim (Ed.)
    Large Language Models (LLMs) are very effective at extractive language tasks such as Question Answering (QA). While LLMs can improve their performance on these tasks through increases in model size (via massive pretraining) and/or iterative on-the-job training (one-shot, few-shot, chain-of-thought), we explore what other less resource-intensive and more efficient types of data augmentation can be applied to obtain similar boosts in performance. We define multiple forms of Dense Paraphrasing (DP) and obtain DP-enriched versions of different contexts. We demonstrate that performing QA using these semantically enriched contexts leads to increased performance on models of various sizes and across task domains, without needing to increase model size. 
    more » « less